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What is Barrett’s esophagus?
Barrett’s esophagus:
• Barrett’s esophagus is the pre-cancerous lesion of esophageal adenocarcinoma
• Replacement of the normally squamous lined lower esophagus is with a columnar 

epithelium that develops intestinal differentiation
• Thought to be due to chronic reflux (heart burn) and inflammation

http://physicianassistantboards.com/2015/12/14/pa-boards-79-barretts-esophagus/

http://physicianassistantboards.com/2015/12/14/pa-boards-79-barretts-esophagus/


Barrett’s esophagus and esophageal adenocarcinoma

• EAC is a deadly cancer with a drastically increasing incidence
• BE is the precursor (pre-cancerous lesion) and largest risk factor for 

developing EAC
• Despite knowing this, currently we do a poor job at identifying the right 

patients to treat.
• BE is extremely common

• Low overall risk of progression
• Risk currently determined by diagnosis of dysplasia

• Challenging diagnosis with significant disagreement
• Newer studies suggest the time between the development of dysplasia > 

cancer shorter than originally thought

Barrett’s esophagus > Barrett's esophagus with dysplasia > esophageal adenocarcinoma
(very common) (less common) (rare, but rapidly growing incidence)
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• TP53 alterations occur early in 

progression process
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Understanding the transition into invasive cancer
• Previous studies have focused on esophagectomies with large tumors
• Area of dysplasia most closely related to cancer likely overgrown/destroyed
• Instead wanted to focus on very early (microscopic) cancers

http://www.pathologyoutlines.com/topic/esophagusadenocarcinoma.html

http://www.pathologyoutlines.com/topic/esophagusadenocarcinoma.html


Sequential Laser Capture Microdissection (EAC > HGD > LGD > NDBE), 76 total samples
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Workflow

• Performed WGS on 76 samples 
+ paired normal
• Haplotype-specific copy 

number calling
• allowed a refined assessment of 

both sCNV and structural 
variants

• In combination with 
mutational calling, a detailed 
phylogenetic ‘tree’ for each 
patient was constructed
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Multi-sample joint analysis



No whole-genome duplication

Patient 2

LGD

BE1
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HGD2

IMEAC2
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IMEAC3BE39p focal del
+ UPD FHIT

TP53 p.R282W +17pA del
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17p focal amp 

Late whole-genome duplication
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Oncogenic high level amplifications are present in 
the most closely related area of dysplasia

• 10/15 Pts focal amp involving at least 
one oncogene was shared between 
cancer and most closely related 
dysplasia
• Commonly genes encoding receptor 

tyrosine kinases (RTKs), including EGFR, 
FGFR2, ERBB2, and other oncogenes 
including MYB, CDK6, MYC, GATA4 and 
GATA6
• 4/5 Pts with multiple dysplasia, only 

found in most closely related to 
cancer

Early whole-genome duplication
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Genomic evolution from Dysplasia to EAC can still occur

• 7/15 pts clear evidence of 
evolution between the 
cancer sample and most 
closely related dysplasia
• 3/7 increase copy number
• 4/7 gain of new 

amplification

LGD 19 copies ERBB2 > EAC 100 copies
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Genomic evolution from Dysplasia to EAC can still occur

• 7/15 pts clear evidence of 
evolution between the 
cancer sample and most 
closely related dysplasia
• 3/7 increase copy number
• 4/7 gain of new 

amplification

HGD ERBB2, CDK6 amp > EAC ERBB2, CDK6, KRAS amp
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CDK6 (11) ERBB2 (20)



• Recent paper suggests a single CNV 
event such as deletion of the 
chromosomal end can cause a BFB 
and lead to multiple downstream 
complex CNVs in only a couple of cell 
divisions
• Followed damaged cells in tissue culture
• Showed through BFB simple gains or 

losses can quickly evolve into more 
catastrophic events

• A single terminal deletion can initiate the 
cascade

Early genomic evolution may explain BE evolution 
and transformation into EAC

Umbreit NT, Zhang CZ, Lynch LD, et al. Mechanisms generating cancer genome complexity from a single cell 
division error. Science. 2020;368(6488):eaba0712. doi:10.1126/science.aba0712



A single, simple copy number alteration can lead to more 
downstream complex events
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Classification of copy-number alterations
• Previous studies 

have shown some 
types of CNVs can 
lead to further CIN 
in an in vitro 
setting
• Unknown how 

these mechanism 
may influence 
genomic 
progression in BE
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BE genome evolution is driven by both episodic and 
continuous genomic instability

• Number of CNVs on each 
Phylogenetic branches does 
not correlate well with the 
number of SNVs
• Suggests CNVs may occur in 

episodic bursts
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BE genome evolution is driven by both episodic and 
continuous genomic instability

Evidence 1: Divergent copy-number alterations present in related 
dysplastic lesions that can be traced to a single ancestral unstable 
chromosome 

Evidence 3: Evidence for complex alterations arising 
downstream of ancestral chromosome breaks also 
came from examples of divergent genome evolution 
with complex genomic alterations seen in one 
progeny clone that shared terminal or internal copy-
number changes with other clones 

Evidence 2: Resolution of chromosome bridges can also 
generate more complex copy-number changes including 
chromothripsis



BE genome evolution is driven by both episodic and 
continuous genomic instability

293 chromosomes with complex copy-number patterns (defined as more 
than 2 copy-number changes), 58% also had preceding terminal copy-
number changes. 



Evolution and polyclonal expansion of dysplastic BE 
lesions
• Through episodic and more continuous/multi-step processes we see a picture of continuous branching 

evolution which creates complex genomic heterogeneity throughout the patient's entire field of BE



Evolution and polyclonal expansion of dysplastic BE 
lesions
• Single pt with HGD

• Endoscopic brushing of HGD
• Single cell DNA sequencing
• ~1x WGS

TP53 mutation



Evolution and polyclonal expansion of dysplastic BE 
lesions
• Genomic alterations highly heterogeneous (especially after 

loss of TP53

• Able to see individual cells with same chromosomal 
patterns as other 15 patients



Evolution and polyclonal expansion of dysplastic BE lesions leads 
to multiple independent transformations to EAC
• In five patients with multiple areas of intramucosal (IMEAC) or early adenocarcinoma, the EAC lesions showed 

significant genomic divergence and were inferred to be in separate evolutionary branches. 

• 4/5 patients had pre-cancerous samples more closely related to a cancer sample then the cancer samples were to 
each other.

• Strongly suggest that the progression from dysplasia to adenocarcinoma occurred independently within one or more 
fields of dysplasia 
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Non-dysplastic Barrett’s esophagus

Area of dysplasia
Focal area of high-grade Dydsplasia

STOMACH

SQUAMOUS
ESOPHAGUS
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HGD2

EAC1

EAC2

BE
TP53 loss

whole-genome
duplication

oncogenic amplification

oncogenic amplification

Early genomic heterogeneity and multiple transformations help explain 
oncogenic driver heterogeneity seen in advanced EAC
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